
(Refer Slide Time: 15:54)

So, this is just again very quickly very quickly let us look at now we are going to take a more

elaborate depth with more clear examples that, optimization is done on the signals by encoding.

So, last unit we have already dis discussed that encoding is very important. So, if you encode

basically what is going to happen? If there are n control signals in the CPU, the length of each

control word of the memory will be n very simple there is a horizontal micro program

everything is parallel. This is actually a horizontal micro program and it is going to be very

fast, but the memory is unoptimized.

To do this we have seen that in the last unit, that we have to optimize by encoding the signals,

which is actually called the vertical micro instruction. So, if you just go for a very flat

compression that is from 2𝑛, we just compress it to 𝑛 or from 𝑛 to 𝑙𝑜𝑔 𝑛 and using 𝑛 to 2𝑛

decoder, then actually full compression is there and this is actually called a full vertical micro

program. But in this case only one bit signal can be made a 1. So, if simultaneously 3 or 4

points to be a 1 you require 4 cycles for that.

But we have seen that this is not a very very good way of solving the problem, because it makes

the memory very small, but it will take very long time to solve the problem.

711

(Refer Slide Time: 17:03)

So, what we basically do is that, we go for basically something called a hybrid approach in

hybrid we make clustering and for each clustering we will try to put signals in one cluster,

which need not be 1 simultaneously. So, that is one idea of actually called a hybrid micro

program.

So, that approach actually we are going to see with a more elaborate example, because in the

last unit we have discussed the basics. So, this slide tells about the horizontal micro program

that it is one extreme, and it is basically it is longer and in the vertical micro program it is highly

compressed. So, it is the other extreme. So, whatever I was discussing is basically written in

this slide, you can over go through this the theory part of it, now this is very important.

712

(Refer Slide Time: 17:46)

So, we are taking a single bus architecture, now we will mainly focusing on example because

theory mainly we have covered in the last unit. So, if you look at it, this is a single word single

bus architecture. So, in this we are trying to will try to exam try to find out basically how we

can optimize the vertical and horizontal micro program taken together, that is your basically a

hybrid; hybrid kind of architecture we will consider for the micro program memory and we

will be taking a single bus architecture to exam use it.

So, what is an assumption here we assume that here there are 4 temporary registers

𝑅0, 𝑅1, 𝑅2, 𝑅3. So, the number of signals are 0 1 in out, in out, in out. So, 4 registers are there

and in and outs are there. So, just remember how many signals are there 8 signals are there then

there are 3 system registers, which a user cannot use and they are used for some system storage;

so 1, 2, 3. So, that is temp, destination and source some registers are there.

So, how many registers total? 1, 2, 3, 4, 5, 6, 7 and for each register you have a input and output

port. So, it is 7 into 2 14 signals are there just keep it in mind, then we have a instruction

register. So, instruction register always takes the input. So, 𝐼𝑅𝑖𝑛 is there that is 1. So, 14 plus

115 signals are there, program counter in and out 14, 15, 16, 17; memory address register in.

So, it is 18 14, 15, 16, 17, 18 memory data register in and out 18+ 2 20, then this is your CPU.

So, you can see 𝑌𝑖𝑛 then basically your functions that will be again some control lines for the

functions and then basically 𝑍𝑖𝑛 and 𝑍𝑜𝑢𝑡.

713

So, let us count how many input and output ports are there. So, 1 2 there are 7; 4 user registers,

3 system registers 7 into 2 14 then 15 16 17 18 19 20 21 22, 23 I miss something 1, 2, 3, 4, 5

6, 7 8, 9, 10 sorry 10; 10 over here, and 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 20 actually

there are 24 signals will be there you just count I mean I missed something.

So, there are 24 input output ports you will find out 14 there are 14 over here 15, 16, 17, 18 19,

20, 21, 22 23, 24. So, just count over here so this input output ports if you look at you will find

out that there are 24 input output ports the signals I will show you. Along with that; that means,

there are 24 ports to be controlled which corresponds to input or output or any register like

𝑀𝐵𝑅, 𝑀𝐴𝑅, 𝑅0 to 𝑅4 source destination 𝑌, 𝑍, 𝑍𝑖𝑛, 𝑍𝑜𝑢𝑡 if you count there are 14 sorry 24

signals which correspond to that those values and therefore, also there should be some signals

which will tell you; that means, there is to be add, subtract, multiply. So, those signals will also

be there.

(Refer Slide Time: 21:07)

So, now, we are we will try to see based on this architecture how we can optimize based on

cluster. So, assigning individual bits to each signals leads to a long micro instruction because

here we have counted that there are 24 input output ports then for some ports some signals will

be there to control the ALU, that also you have to add along with that you have to have some

signals like 𝑠𝑒𝑙𝑒𝑐𝑡, 𝑎𝑑𝑑, 𝑠𝑒𝑙𝑒𝑐𝑡, 𝑊 for read, that is memory read or write there should be one

signal then the wait for 𝑊𝐹𝑀𝐶 will be one signal. So, there are several other signals and the

count will be quite large.

714

So, let us see what is the count. So, we will see the count in the next slide, but if you take all

the counts and put in the flat architecture the size will be very high already we have discussed

so many times, which will be a horizontal micro program. So, this will; obviously, lead to lower

bit space utilization, which is the case in horizontal micro program.

So, as I told you we are assuming that there are 4 user purpose registers. There are 3 source

there are 4 user purpose registers, there are 3 central registers and basically as you have counted

corresponding to the like a memory address register, memory data register, 𝑍, 𝑌. So, there are

24 gating signals as we have counted in the figure, along with that basically read, write, clear,

set, carry in some signals 𝑊𝑀𝐹𝐶, 𝐸𝑛𝑑.

So, the signals can be more, but in this example we are assuming that these many other extra

signals are there like read, write from the memory. Clear means clearing some value of 𝑌 in a

register, set carry in that is the carry in of the ALU, wait for the memory and end. So, these

also actually count from to 1 2 3 4 5 6 there are another 6 signal are there. 24 signals were there

for the input output of the registers which we have counted in the bus architecture.

And let us assume that there are 16 different operations which the ALU can do, like add,

subtract, and, or, compare. So, many other signals are there let us assume that 16 different

functionalities are possible. So, there will be 16 different lines.

(Refer Slide Time: 23:05)

715

Just like again I am going back; so there will be 16 lines over here and if you take all these

control lines for the registers there will be another 24, and there assume that 6 more control

lines are there which corresponds to read, write, carry in ok. So, they are corresponding to

𝑟𝑒𝑎𝑑, 𝑤𝑟𝑖𝑡𝑒, 𝑐𝑎𝑟𝑟𝑦 𝑖𝑛, 𝑊𝑀𝐹𝐶. So, another 6 more signals are required for some other

interfaces. So, together there will be 30, 46 signals required if you want do it in parallel.

So, the memory word size will be how much? It will be 46 bits in a horizontal micro program.

(Refer Slide Time: 23:38)

So, therefore, it says that there is 46 different signals are there and therefore, basically 46 will

be the length of the micro program and it has been found theoretically that only 10 to 15 % of

the memory positions are 1. So, if we have such a big array whose size is 46 and it will be long

it will be long depending on how many micro instructions are there, and only 15 % is actually

filled with 1 is a huge waste of memory that is why we go for either vertical micro program or

a vertical micro program is very slower, because in this case it will be log 2 46. So, I think

around 6 bits will 25 is 32. So, 26 is 64. So, 6 bits will actually solve the problem for you.

So, if I go for a full encoding architecture. So, it will be 6 bits which will encode and then you

can use 6 is to the 64 bit architecture using a decoder and the job will be done, but in this case

it will be very very slow you have simultaneously only 1 bit can be made 1, so in fact, it is not

a very good idea to solve the problem. So, we can may go for a clustering approach which is

called the hybrid micro program. So, that is what actually we are going to study.

716

(Refer Slide Time: 24:45)

Before that how to make a cluster and what will be the idea for that, that we have to properly

think and we have to make the cluster. So, if we go for a flat architecture that is each bit can be

in one cluster that’s horizontal micro program one extreme and if I go for full encoding that is

6 bits will be required to encode all the 46 bits, and it will be a very complex architecture, but

at a point only 1 bit can be a 1 which is actually written over here. So, it will be very very slow.

So, now, let us try to think how we can make clusters.

(Refer Slide Time: 25:15)

717

Say for for the timing just assume that there is F1, F2, F3, F4, F5 some 10 clusters they have

thought about. So, I will try to see think some basically of some thumb rules we make the

cluster. For example 𝑃𝐶𝑜𝑢𝑡, 𝑀𝐷𝑅𝑜𝑢𝑡, this circle if you see this cluster all the outputs of the

registers I put in 1 cluster this is because it’s single bus architecture. So, simultaneously

𝑅1𝑜𝑢𝑡, 𝑅2𝑜𝑢𝑡, 𝑅3𝑜𝑢𝑡, source out cannot be done it will leads to a conflict that is if you look at

this if you look at this figure.

So, on it’s a single bus architecture. So, all these registers all these 24 story I was talking about

only 1 bit can be out at a time, of this single bus that is the problem. So, it is very wise that you

put all the basically out signals in 1 cluster; that means, idea is that in 1 cluster only 1 bit can

be made 1 at a time. So, there is no problem 1 2 3 4 all these outs you actually put in 1 cluster,

then your job is done because simultaneously only 1 bit can be 1 and that is what is required

because simultaneously R2 out and R3 out cannot be made 1.

So, actually how many such instructions are there? 1 2 3 4 5 6 7 8 9 10 11. So, if you calculate

there will be 1 2 3 4 5 6 or some fifth for 10 of 11 out signals for the registers. So, how many

bits are required? You will require a 4 bits to solve the problem. So, you require a 4:16 decoder

for this and in this case I mean because the full decoder will not be used because you don’t

have 16 such signals.

So, you can just say 000 for no transfer; that means, nothing will happen and all the other bits

are actually don’t cares in all the cases there will be no output, but if it is 001 PC out will be 1

if it is 0001 then 𝑀𝐷𝑅𝑜𝑢𝑡 it will be 1 and your job is done.

Another important cluster is actually I will put because I told you there are actually 16 different

functions of the ALU. So, I can club all the controls in 1 decoder in one cluster because

simultaneously I cannot have add and sub simultaneously only one can be high. So I actually

cluster everything make a 1 cluster your job is done. So, this one 2 very key rule that all the

outputs basically you put in 1 cluster, all the CPU function will be put in 1 cluster because

simultaneously 2 cannot be 1 and simultaneously ALU cannot do operation.

But this logic only holds if it’s a single bit architecture bus architecture. It is a multiple

architecture then 2 bits also can be simultaneously 1 and then again you have to break it up in

the cluster. So, in this discussion we are keeping these things simple. So, in a single bus

architecture this is one of the very good way of doing.

718

Now, read. So, read can be multiple, because it can happen that there will be only one output,

but simultaneously 2 or 3 guys can take the inputs together. So, based on that you can make

some architecture or clustering in this case they have put 𝑃𝐶𝑖𝑛, 𝐼𝑅𝑖𝑛, 𝑍𝑖𝑛 all the registers in 1

cluster; 𝑀𝐷𝑅, 𝑀𝐴𝑅 in 1 cluster; 𝑌, 𝑠𝑜𝑢𝑟𝑐𝑒 𝑖𝑛 in 1 cluster. So, this clustering they have made

based on some philosophy that is they have thought that like they have said thought that 𝑃𝐶𝑖𝑛,

I 𝐼𝑅𝑖𝑛 they are moving they are keeping it in basically 1 cluster so; that means, they have found

out that both reading the value of PC that is loading the value of the some loading the value

updated value to PC and loading the IR generally does not happen in 1 cycle.

So, they have put it in 1 and they have also thought that in the same cycle register when you

are updating the PC, before or a instruction is loaded into the instruction register

𝑅0, 𝑅1, 𝑅2 𝑎𝑛𝑑 𝑅3 basically do not read at the same cycle because when a PC is updated,

generally the temporary registers do not read the values.

For example when you are dumping the value in of 𝑍 that is the output of the ALU goes to Z

and then in the next cycle only it goes to the different registers. So, when you are updating the

output of the ALU in 𝑍 and that cycle basically the registers don’t get updated. Because first

the output of the ALU goes to 𝑍 and then in the next cycle it actually goes to the registers. So,

they have kept these all the 𝑅𝑖𝑛s basically with 𝑍𝑖𝑛.

But that is why they have made 1 cluster, and they have found out how many instructions are

there 1 2 3 signals are there 1 2 3 4 5 6 7. So, 7 of course, 3 bits are required and 1 may be a

don’t care case, but they have thought somehow that basically it may happen that some PC

output basically generally goes to memory address register in. So, that they have put in over

here. So, 𝑃𝐶𝑜𝑢𝑡 generally goes to memory address register.

But they also have thought that sometimes you may read the value of program counter in terms

of temporary registers for some storing the value or starting the current instruction or you can

also think that means basically register value out can go to 𝑅𝑖𝑛 and also it may go to basically

memory address register in if it is an indirect addressing kind of mode.

So, it may happen that the output of basically 1 register can go to multiple registers or the PC

can go PC output can go to a temporary register, address it can to the memory address register.

So, in that philosophy they have decided to put basically the user registers over here and the

memory address register or the memory data register or 𝑇𝐸𝑀𝑃𝑖𝑛 in another cluster. That means,

719

basically simultaneously 1 register can be made 1 and 1 register can be made 1 here and even

1 register can be made 1 here the input.

So, simultaneously some output can be fed to 1 register over here, 1 register over here and 1

register over here that is where you require simultaneous input it’s possible more likely you

that why divide the cluster. If you would have thought ok just like your output I just think that

only 1 register can be input at a time.

So, you can we could have put all these in another cluster and then you could have saved a

space, but here they have assumed that I am making the cluster based on simultaneous inputs

which is possible to the registers. So, based on that philosophy they have divided the signals

into different clusters corresponding to that single bus architecture. And there were some other

control signals as I told you that there is something called read. Again I am putting the read in

a single cluster because the memory can be read or write at 1 go and similarly like this is the

carry in you are putting in 1 cluster because carry can be either 0 and 1 and so forth that is wait

because wait can be simultaneously 1, with anything else you can put it 1 and then end and

continue are the 2 signals.

So, these are some of the other controls signals for the memory and wait for memory cycle

etcetera because if I want to put this one over here this is not a good idea, because generally

we give read and write and simultaneously also we require to wait for the memory signal to be

ready. So, we put this read write in 1 cluster and WMFC another.

So, this example actually gives you a broad in the last unit we actually gave you the

philosophical idea that why clustering how it can be made as clusters, and why you require to

put everything in 1 cluster, if you put it will become a full vertical micro program very slow,

if you make everything single signal cluster it will be a horizontal micro program very fast but

very inefficient, here we have given a single bus architecture a real example with each bits,

signals and registers and ALU.

So, 1 pure example or a complete example we have taken for a single bus architecture and then

we have made the cluster for all the signals based on the philosophy or clustering; so this one

actually examples the theory we discussed in the previous unit in a more practical example.

720

(Refer Slide Time: 32:38)

So basically so whatever I have discussed is written in this slide, you can go through here

basically why I put read write in 1 point, why this 16 ALU functions I put in 1 cluster. So,

whatever I was telling things I have kept it in this slide so that you can read it offline.

(Refer Slide Time: 32:55)

So, now, what is the gain? So, if you see the gain. So, how many bits are required 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21. So, 21 bits are required to solve the problem, we saw the

46 bits required in the extreme flat case and if you look at it how the way we have clustered it

721

very very few cases there will be contention at very very few cases you can have both R2 and

R2 in together in that case you have to split it.

But mostly basically we will have as similar performance as a fully horizontal architecture and

still you have saved a lot in the space of the memory. So, basically if you also I mean that is

that is what I have to tell here all philosophy is extended. And please go through the slide to

find out what is the basically I have told about this grouping and what are the advantages.

So, these 2 slides this slide and this slide tells what are the advantages and what are the gains

and what with drawbacks of the basic clustering philosophy we are taught for this example,

you can go through this slide offline and get the values.

So in fact, they have find out basically.

(Refer Slide Time: 34:04)

So, I mean instead of 40 signals we are basically now F10 value number of word is 21. So,

huge saving space, but of course, some additional things are required we require some decoders

over here also some decoders are also required like for some groups basically, we require 4:16

decoder, for some group 3:8 decoder and for some case 2:4 decoders.

So, not only you have to find out the cost of the basically your memory is saved that is true,

but also you have to account for the decoders are also taken into picture and also they are maybe

slightly slower in speed corresponding to a horizontal micro program, but that will not be very

very high, because the way intelligently we have actually placed the signal in different clusters.

722

So, till now if you have looked actually we were discussing how to optimize the micro

programs and in the first part actually we have seen, that how you can optimize it based on

actually compressing in the length of the control memory width. So that we can encode some

signals based on clustering, how we can optimally select which parts has to be encoded and so

forth.

(Refer Slide Time: 35:07)

Now, we are going to see another interesting way of optimizing the micro program how?

Basically by compression in this manner; that means, if you have some certain different

instructions, you can easily have 10 different micro program micro programs and load them

and execute accordingly. But you have might have observed that in most of the cases or in fact,

in the all most all cases basically the fetch part is same.

So, and for example if you have a instruction called SUB and you have a instruction called

𝐴𝐷𝐷 maybe 𝑎𝑑𝑑 𝑅1 𝑜𝑟 𝑅2 and 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 𝑅1 𝑎𝑛𝑑 𝑅2. So, you can feel that most of the micro

instructions and the signals to be generated will be same except in only 1 case, then in one in

case of add the arithmetic logic unit has to be configured to add and in case of subtraction is

just to be configured into sub mode. So, only one bit will be changed or one control signal will

be changed all others will remain similar.

So, if you have 2 different micro programs for this 2 micro instructions. In fact, that will be

wastage in the amount of memory space which will be required in the micro program control

memory. So, how can we optimize that? So, basically we can optimize by actually having a

723

single micro program for most of the common instructions, and then diverging out for the

different parts and again coming back from where we can start.

For example if you had a single program called 𝐴𝐷𝐷 𝑅1, 𝑅2 and maybe 𝑆𝑈𝐵 𝑅1, 𝑅2. So, most

of the fetch etcetera loading from 𝑅1 to 𝑅2 saving the value of 𝑅1 + 𝑅2 or 𝑅1 − 𝑅2 to 𝑅1

will be similar. Only in one case basically you will find out that you have to add signal equal

to 1 and in this case you have to make subtract signal equal to 1. So, only may be only 1 line

of instruction will be only 1 memory word will be different for the 2 different macro

instructions and all other will be similar.

So, what we can do? We can write a common micro program, the fetch part will be similar

maybe all other maybe some register loading will be similar just after that there will be 1 signal

which one will correspond to 𝑎𝑑𝑑 = 1 another branch will be for 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 = 1 and again after

executing then you can again come back here, which will lead to storing the value of the ALU

to register 𝑅1 that is the destination.

So, therefore, the second way of optimization is writing same micro program for different

macro instructions which is of similar type, and then moving here and there as the branch

instructions based on the difference of the control signal that is required for that macro

instruction.

So, in a very broad sense you have some different macro instructions club them together, write

a single micro program and then depending on the exact micro program being exact macro

program being executed, which will be told to you by basically the instruction decoder that is

from the instruction register and the instruction decoder will tell you exactly which is the macro

instruction being executed like add or sub, based on that you jump to the location which

corresponds to the independent or the different part of micro instructions corresponding to the

macro instruction execute the different part and again come back and execute the common part.

So, basically that is another way of optimizing the micro program memory, which we are now

going to discuss basically.

So, whatever I told you basically is given in this slide, it says that we can implement different

instruction by different micro, micro program, but that will be very un optimized. So, basically

this is the simple solution, but will increase the number of memory. Because we know that

there are so many different addressing modes, so, many different type of basically macro

instruction and so forth.

724

